
Goldilocks: A tool for identifying
genomic regions that are “just right”
Supplement: Usage and plotting examples

Samuel M. Nicholls, Amanda Clare, Joshua C. Randall

msn@aber.ac.uk — https://github.com/SamStudio8/goldilocks

This document is provided as a supplement to our paper as an introductory guide to Goldilocks with examples
of using the package to conduct a census and a demonstration of the formatted output and plotting functionality.
Examples were tested at the time of print but Goldilocks is open-source software under continuous development
and future versions may feature a different API. For more background, examples and the latest documentation
refer to the canonical documentation hosted at https://goldilocks.readthedocs.org/en/latest/.

Contents

1 Installation 2

2 Command Line Usage Example 2
2.1 Inspect Strategies . 2
2.2 Nucleotide Counting . 3

3 Package Import Usage and Output Format Examples 4
3.1 Nucleotide Counting . 4
3.2 Our Quality Control Study . 5

3.2.1 Tabulated Output . 6
3.2.2 BED Output . 6
3.2.3 Melted Output . 7
3.2.4 Circos Output . 7

4 Custom Census Rules 8
4.1 A Simple ORF Finder . 8

4.1.1 Code Sample . 8
4.1.2 Implementation Description . 9

5 Plotting Examples 10
5.1 Scatter Graphs . 10

5.1.1 Simple Plot . 10
5.2 Line Graphs . 11

5.2.1 Plot multiple contigs or chromosomes from one sample . 11
5.2.2 Plot a contig or chromosome from multiple samples . 12

5.3 Histograms . 13
5.3.1 Simple profile (binning) plot . 13
5.3.2 Simpler profile (binning) plot . 14
5.3.3 Proportional bin plot . 14
5.3.4 Bin multiple contigs or chromosomes from one sample . 15
5.3.5 Bin a contig or chromosome from multiple samples . 16

5.4 Advanced . 17
5.4.1 Plot data from multiple counting tracks from one sample’s chromosomes 17
5.4.2 Plot data from multiple counting tracks for one chromosome across many samples 18

5.5 Integration with external plotting tools . 19
5.5.1 ggplot2 . 19
5.5.2 Circos . 20

1

https://github.com/SamStudio8/goldilocks
https://goldilocks.readthedocs.org/en/latest/

1 Installation

Goldilocks is available from the Python package index. The latest version can be installed with pip.

> pip install goldilocks

The development version can be retrieved from the repository https://github.com/SamStudio8/goldilocks.
Bug reports and feature requests may be submitted to the repository’s issue page or the corresponding author.

2 Command Line Usage Example

2.1 Inspect Strategies

Although Goldilocks is a Python package designed primarily to be imported into user scripts, the package
features a lightweight command line interface that exposes its basic functionality. Goldilocks is packaged with
several built-in strategies that will cover the majority of basic counting tasks. To see the strategies and output
formats that are available, execute goldilocks list:

> goldilocks list

Available Strategies

* gc (GCRatioStrategy)

Calculate GC ratio over regions

* motif (MotifCounterStrategy)

Count occurrences of one or more nucleotide motifs

* nuc (NucleotideCounterStrategy)

Count occurrences of one or more individual nucleotides

* ref (ReferenceConsensusStrategy)

Calculate (dis)similarity to a given reference

Available Output Formats

* bed

Browser Extensible Data containing region positions only

* circos

Data compatible with the circos plotting tool

* melt

Data compatible with tools expecting a melted dataframe, such as ggplot2

* table

Simple tabulated output

2

https://github.com/SamStudio8/goldilocks

2.2 Nucleotide Counting

Consider the problem of finding regions of a genome that contain the most uncalled nucleotides (N’s). As
described in our paper, Goldilocks conducts a census of regions by sliding a window of a user-defined length
and overlap over input sequences and applying a desired strategy.

In this scenario we want to apply the nucleotide counting strategy, referred to as nuc by the command line
interface. A strategy may count multiple interesting targets simultaneously. For example the nucleotide counting
strategy may count the presence of multiple bases in one census; Goldilocks refers to these multiple interesting
targets as ‘tracks’. We specify one track, to count the number of appearances of the nucleotide N. Results should
be sorted by max (i.e. in descending order). We will arbitrarily select the region length to be 100,000 base
pairs and the stride (overlap) to be 50,000 base pairs. The example below demonstrates how to provide these
options to the Goldilocks command line interface and process the sequences stored in files sample0.fa.fai to
sampleN.fa.fai.

> goldilocks nuc \ # use the NucleotideCounter strategy

max \ # sort the censused regions by maximum value

--tracks N \ # count the N bases only

-l 100000 \ # length of the census window

-s 50000 \ # overlap of the census window

-@ 4 \ # permit multi-threaded census with 4 threads

sample0.fa.fai \ # input FASTA index(es)

...

sampleN.fa.fai \

By default Goldilocks outputs census results in a tab-delimited format to stdout. Each row in the table below
represents a censused region on a chromosome, with a 1-indexed start and end base. A column for each sample
(input file) and track (in this case, just the nucleotide ‘N’) combination is appended to the table. For the
purpose of our example, for each region, the number of N nucleotides seen on sample0.fa.fai will appear
under 0 N and so on. Columns continue up to N N, the number of N bases seen on some sampleN.fa.fai, for
each region.

As we’ve specified max, the region rows will be sorted by the total number of N bases seen on that region across
all of the samples 0..N. For more complex sorting, users will need to use the package in their own scripts instead.

chr pos_start pos_end 0_N 1_N ... N_N

1 100001 150000 25000 12500 ... 37500

...

1 1 50000 0 25000 ... 1500

Goldilocks supports additional output formats, as listed by the command goldilocks list, that are introduced
in Section 3.2. These can be selected by specifying the -f option: e.g. -f circos. However, for more
information and examples of currently available output formats, refer to the package’s online documentation.

3

3 Package Import Usage and Output Format Examples

Usage of Goldilocks is not limited to the command line, in fact one may access its more advanced features by
importing the package to their own scripts. Note that Goldilocks is distributed under the MIT license, allowing
end users to use the software in their own programs without restriction.

3.1 Nucleotide Counting

Let’s repeat the introductory command line example from earlier by using the package in a Python script.
Let’s consider the code sample below, we begin by importing the Goldilocks package, the desired strategy and
a dictionary describing the sources of sequence data. Each key in this dictionary is the name of a sample (a
loosely defined term) whose corresponding value is another dictionary that contains the single key file with
value contains the path to the FASTA index file for that particular sample.

The census options are then defined as arguments to the Goldilocks object constructor. The desired strategy
is the first positional parameter and is instantiated with a Python list containing the counting tracks of interest;
in this case, the single nucleotide N. The sequence data dictionary is the second positional parameter.

The remaining keyword arguments may appear in any order and simply encode the desired parameters of the
census in a similar fashion to the command line example. length and stride set the length and overlap of the
census region, respectively, the number of processes may be set with the processes keyword. is faidx is a
special boolean parameter that ensures the sequence data dictionary is treated as containing paths to FASTA
index files, as opposed to actual sequence data.

Finally, after the census is completed, one can use the query function to analyse the results. In this example
we sort regions by the max of total ‘N’ nucleotides seen on each region across all the input samples (as before).

Import Goldilocks itself

from goldilocks import Goldilocks

Import the desired strategy from goldilocks.strategies

Refer to documentation or execute "goldilocks list" for available strategies

from goldilocks.strategies import NucleotideCounterStrategy

Sequence data, keys are sample/group names

Values are dictionaries with single key file and a path to particular FASTA index as value

sequence_data = {

"sample0": {"file": "/path/to/sample0.fa.fai"},

...

"sampleN": {"file": "/path/to/sampleN.fa.fai"},

}

Construct the Goldilocks census

g = Goldilocks(

NucleotideCounterStrategy(["N"]), # Instantiate strategy with track(s) of interest

sequence_data, # Provide sequence data dictionary

length="100K", stride="50K", # Set the length and overlap of the census window

is_faidx=True, # Flag to treat data as FASTA index files

processes=4 # Permit 4 threads during census

)

Query the census, sort regions by "max" number of N’s, print a simple comma-delimited

table of the total N’s seen on each region, and output a FASTA of regions with

the highest number of occurrences over all samples

g.query("max").export_meta(sep=",", group="total")

g.export_fasta()

4

3.2 Our Quality Control Study

Goldilocks is not limited to simple queries, in fact queries can be chained together to identify regions that satisfy
a complex set of criteria. As briefly described in our paper, Goldilocks was originally written to locate regions of
the human genome that expressed a “representative” degree of variation (that is, the density of single nucleotide
polymorphisms (SNP)) across data in a genome wide association study, whilst maximising the number of SNP
sites that could be compared between an individual’s whole genome sequence and run of a genotyping chip.

The chromosome-base position pairs analysed by both the whole genome study (the gwas group) and the
genotype chip study (ichip) were available in a tab-delimited file (extracted from the CHR, POS columns of
the VCF). Goldilocks is capable of automatically parsing this “position format” and thus the sequence data
dictionary can be specified in a similar manner to those for FASTA index files.

The Goldilocks object is constructed in the same way, despite the use of a different strategy. Here we initialise
the PositionCounterStrategy: a special strategy that reads lists of positions rather than actual sequence
data. This particular strategy does not require any tracks to be set.

The region length is 1Mbp with a 500Kbp overlap. Note the use of the is pos file flag rather than is faidx,
as the inputs are tab-delimited position files, not FASTA index files. It is anticipated in future releases that
Goldilocks will be capable of detecting whether or not users are providing files or raw sequence data to remove
the requirement of raising a flag to declare the input file type.

It is also possible to set the number of simultaneous processes to be spawned during a census with processes.

from goldilocks import Goldilocks

from goldilocks.strategies import PositionCounterStrategy

sequence_data = {

"gwas": {"file": "/encrypt/ngsqc/vcf/cd-seq.vcf.q"},

"ichip": {"file": "/encrypt/ngsqc/vcf/cd-ichip.vcf.q"},

}

g = Goldilocks(PositionCounterStrategy(), sequence_data,

length="1M", stride="500K", is_pos_file=True, processes=8)

g.query("median", percentile_distance=20, group="gwas", exclusions={"chr": [6]})

g.query("max", percentile_distance=5, group="ichip", limit=25)

Once the census is complete, we sort the number of variants seen on the GWAS group at each region by their
distance from the median of variants seen on the GWAS over all regions. We filter out any regions that do
not appear within ±10 percentiles of the median with percentile difference. We exclude any region from
chromosome 6 with an exclusions dictionary (we wanted to avoid the major histocompatibility complex). The
syntax for exclusions and other keywords are described in more detail in the online documentation.

To enhance our study and retrieve the subset of these regions that will best maximise the number of locations.
We can compare results between the GWAS and separate chip studies, we conduct another query on the
Goldilocks object. This time, sorting by the maximum number of variants seen only on the ichip group. We
filter out any regions that are not in the top five percentiles and limit the maximum number of results to 25.

We can then view the results with export meta. The following subsections provide an example of the output
formats available at the time of publishing. For the latest available formats, execute goldilocks list or
consult the online documentation.

5

3.2.1 Tabulated Output

This is the default option if no fmt argument is provided to export meta. The format itself was described in
our earlier command line usage example.

g.export_meta()

chr pos_start pos_end gwas_count ichip_count

2 102000001 103000000 173.0 1928.0

3 46000001 47000000 173.0 1540.0

2 100000001 101000000 179.0 1397.0

...

3 159000001 160000000 158.0 724.0

2 234000001 235000000 179.0 721.0

2 233500001 234500000 149.0 715.0

3.2.2 BED Output

One may just be interested in the regions and the specific values of the counts themselves are inconsequential.
Goldilocks can write just the metadata for the locations of regions in the widely accepted BED format. Note that
positions are 0-indexed and only the first three columns required by the specification are populated.

g.export_meta(fmt="bed")

chrom chromStart chromEnd

2 102000000 102999999

3 46000000 46999999

2 100000000 100999999

...

3 159000000 159999999

2 234000000 234999999

2 233500000 234499999

6

3.2.3 Melted Output

Often, it is useful to analyse results when they are in a “melted” format: that is, a region will feature census
data across many rows instead of many columns. This is especially popular with users of the R language.

g.export_meta(fmt="melt")

region region_id group_track group track chr chr_i value

0 701 gwas-count gwas count 2 204 173.0

0 701 ichip-count ichip count 2 204 1928.0

1 1074 gwas-count gwas count 3 92 173.0

1 1074 ichip-count ichip count 3 92 1540.0

2 697 gwas-count gwas count 2 200 179.0

2 697 ichip-count ichip count 2 200 1397.0

...

22 1300 gwas-count gwas count 3 318 158.0

22 1300 ichip-count ichip count 3 318 724.0

23 965 gwas-count gwas count 2 468 179.0

23 965 ichip-count ichip count 2 468 721.0

24 964 gwas-count gwas count 2 467 149.0

24 964 ichip-count ichip count 2 467 715.0

The region field represents the sequentially numbered i’th region in the output itself, whereas region id refers
to the region’s actual index out of all regions (these are sequentially ordered along the input genome). The
group-track, group and track describe the sample and counting track for the melted region. chr is the number
or name of the chromosome or contig. chr i is the index of the current region on chr, this can be useful as an
x-axis when plotting regions along particular chromosomes.

3.2.4 Circos Output

It is also possible to output metadata immediately compatible for plotting with the popular circos tool.

g.export_meta(fmt="circos", chr_prefix="hs", value_bool=True, header=False, group="total")

hs2 102000001 103000000 1

hs3 46000001 47000000 1

hs2 100000001 101000000 1

...

hs3 159000001 160000000 1

hs2 234000001 235000000 1

hs2 233500001 234500000 1

Several keyword arguments are available for export meta that we have taken advantage of here. As the
karyotype data file we used to generate plots with circos had chromosome sequences named hs1..hsY, we added
the chr prefix keyword to automatically prepend the sample chromosome’s with hs to match without manual
editing later. Setting value bool replaces the final value column with 1 for any region with a value greater
than 0, and 0 otherwise; this comes in useful for tracks with circos that just require a boolean value. To remove
the header line we set header to False. The group parameter is set to total (as opposed to either the gwas

or ichip sample groups). The total sample group is created automatically and holds the sum of census values
seen on a given region across all samples. This is set to prevent export meta printing rows for both groups.

7

4 Custom Census Rules

One of the major features of Goldilocks is its extensibility. Strategies are both easily customisable and
interchangeable, as they all share a common interface. This interface also provides a platform for users with
some knowledge of Python to construct their own custom census rules. One such example follows below:

4.1 A Simple ORF Finder

4.1.1 Code Sample

1 # Import Goldilocks and the BaseStrategy class

2 from goldilocks import Goldilocks

3 from goldilocks.strategies import BaseStrategy

4

5 # Define a new class for your custom strategy that inherits from BaseStrategy

6 class MyCustomSimpleORFCounterStrategy(BaseStrategy):

7

8 # Initialising function boilerplate, required to set-up some properties of the census

9 def __init__(self, tracks=None, min_codons=1):

10 # Initialise the custom class with super

11 super(MyCustomSimpleORFCounterStrategy, self).__init__(

12 tracks=range(0,3), # Use range to specify a counter for

13 # each of the three possible forward

14 # reading frames in which to search

15 # to search for open reading frames

16 label="Forward Open Reading Frames" # Y-Axis Plot Label

17)

18 self.MIN_CODONS = min_codons

19

20 # This function defines the actual behaviour of a census for a given region

21 # of sequence and the current counting track (one of three reading frames)

22 def census(self, sequence, track_frame, **kwargs):

23 STARTS = ["ATG"]

24 STOPS = ["TAA", "TGA", "TAG"]

25 CODON_SIZE = 3

26

27 # Split input sequence into codons. Open a frame if a START is found

28 # and increment the ORF counter if a STOP is encountered afterward

29 orfs = orf_open = 0

30 for i in xrange(track_frame, len(sequence), CODON_SIZE):

31 codon = sequence[i:i+CODON_SIZE].upper()

32 if codon in STARTS and orf_open == 0:

33 orf_open = 1

34 elif codon in STOPS and orf_open > 0:

35 if orf_open > self.MIN_CODONS:

36 orfs += 1

37 orf_open = 0

38 elif orf_open > 0:

39 orf_open += 1

40 return orfs

41

42 # Organise and execute the census

43 sequence_data = { "hs37d5": {"file": "/store/ref/hs37d5.1-3.fa.fai"} }

44 g = Goldilocks(MyCustomSimpleORFCounterStrategy(min_codons=30), sequence_data,

45 length="1M", stride="1M", is_faidx=True, processes=4)

8

4.1.2 Implementation Description

Strategies are defined as Python classes, inheriting from the BaseStrategy class found in the goldilocks.strategies
subpackage. The class requires just two function definitions to be compliant with the shared interface; init :
the class initializer that takes care of the setup of the strategy’s internals via the BaseStrategy parent class,
and census: the function actually responsible for the behaviour of the strategy itself.

The example presented is a very simple open reading frame counter. It searches the three forward frames for
start codons that are then followed by one of the three stop codons. The “tracks” in this example are the
three possible frames. Note on line 9 that our init provides a default argument for tracks of None. Thus
this particular strategy does not need the tracks argument. Instead, the track list is provided by the strategy
itself, and passed to the BaseStrategy init (line 12), forcing tracks to be the list [0, 1, 2]. The elements
of this list are used as an integer offset from which to begin splitting input DNA sequences when conducting
the census later, which is why on this occasion we don’t want to allow the user to specify their own tracks.
Other strategies, such as the included NucleotideCounterStrategy just pass the tracks argument from the
user through to the super init .

For a given array of sequence data and a frame offset (track frame), the census function splits the sequence
into nucleotide triplets from the offset and searches for open reading frames. A subsequence is considered an
ORF by this strategy if the ATG START codon is encountered and later followed by any STOP codon.

Our example finishes with the familiar specification of the location of input sequence data and the construction
of the census itself. Here we specify a census of all 1Mbp regions with no overlap (that is, the stride is equal to
the size of the regions) and instantiate our new MyCustomSimpleORFCounterStrategy with a keyword requiring
valid ORFs to be at least 30 codons in length (excluding start and stop).

Every strategy’s census function is expected to return a numerical result that can be used to rank and sort
regions, in this scenario, census returns the number of ORFs found.

Note also, strategies may specify any number of keyword arguments that are not found in the BaseStrategy.
In our example, min codons can be set by a user to specify how many codons must lie between an opening
and closing codon to be counted as an open reading frame. We store this value as a member of the strategy
object on line 18 and use it on line 35 to ensure the orfs counter is only incremented when the length of the
current open reading frame has exceeded the provided threshold. One could store any number of configurable
parameters inside of the strategy class in this fashion. This framework allows one to increase the complexity of
strategies while still providing a friendly and interchangeable interface for end users.

9

5 Plotting Examples

5.1 Scatter Graphs

5.1.1 Simple Plot

After executing a census one can use the plot function to create a scatter graph of results. The x axis is the
location along the genome (with ordered chromosomes or contigs appearing sequentially) and the y axis is the
value of the censused region according to the strategy used. The example below plots GC content ratio across
the first three chromosomes of the hs37d5 reference sequence, with a window size of 100,000 and a step or
overlap of 50,000. Note that the plot title may be specified with the title keyword argument.

from goldilocks import Goldilocks

from goldilocks.strategies import GCRatioStrategy

sequence_data = {

"my_sequence": {"file": "/store/ref/hs37d5.1-3.fa.fai"},

}

g = Goldilocks(GCRatioStrategy(), sequence_data, length="100K", stride="50K", is_faidx=True)

g.plot(title="GC Content over hs37d5 Chr1-3")

10

5.2 Line Graphs

5.2.1 Plot multiple contigs or chromosomes from one sample

For long genomes or a census with a small window size, simple plots as shown in the previous section can appear
too crowded and thus difficult to extract information from. One can instead plot, for a given input sample, a
panel of census region data, by chromosome by specifying the name of the sample as the first parameter to the
plot function as per the example below:

from goldilocks import Goldilocks

from goldilocks.strategies import GCRatioStrategy

sequence_data = {

"hs37d5": {"file": "/store/ref/hs37d5.1-3.fa.fai"},

"GRCh38": {"file": "/store/ref/Homo_sapiens.GRCh38.dna.chromosome.1-3.fa.fai"},

}

g = Goldilocks(GCRatioStrategy(), sequence_data, length="1M", stride="250K", is_faidx=True)

g.plot("hs37d5", title="GC Content over hs37d5 Chr1-3")

Note that both the x and y axes are shared between all panels to avoid the automatic creation of graphics with
the potential to mislead readers on a first glance by not featuring the same axes ticks.

11

5.2.2 Plot a contig or chromosome from multiple samples

By default, data within the census is aggregated by region across all input samples (in the sequence data

dictionary) for the entire genome. However, one may be interested in comparisons across samples, rather than
between chromosomes in a single sample. One can plot the census results for a specific contig or chromosome
for each of the input samples, by specifying the chrom keyword argument to the plot function. Take note that
the argument refers to the sequence that appears as the i’th contig of each of the input FASTA and not the
actual name or identifier of the chromosome itself.

from goldilocks import Goldilocks

from goldilocks.strategies import GCRatioStrategy

sequence_data = {

"hs37d5": {"file": "/store/ref/hs37d5.1.fa.fai"},

"GRCh38": {"file": "/store/ref/Homo_sapiens.GRCh38.dna.chromosome.1.fa.fai"},

}

g = Goldilocks(GCRatioStrategy(), sequence_data, length="1M", stride="250K", is_faidx=True)

g.plot(chrom=1, title="GC Content over Chr1")

12

5.3 Histograms

5.3.1 Simple profile (binning) plot

Rather than inspection of individual data points, one may want to know how census data behaves as a whole.
The plot function provides functionality to profile the results of a census through a histogram. Users can do
this by providing a list of bins to the bins keyword argument of the plot function, following a census.

The example below shows the distribution of GC content ratio across the hs37d5 reference sequence for all
100Kbp regions (and step of 50Kbp). The x axis is the bin and the y axis represents the number of censused
regions that fell into a particular bin.

from goldilocks import Goldilocks

from goldilocks.strategies import GCRatioStrategy

sequence_data = {

"my_sequence": {"file": "/store/ref/hs37d5.fa.fai"}

}

g = Goldilocks(GCRatioStrategy(), sequence_data,

length="100K", stride="50K", is_faidx=True)

g.plot(bins=[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0],

title="GC Content Profile of hs37d5"

)

13

5.3.2 Simpler profile (binning) plot

It’s trivial to select some sensible bins for the plotting of GC content as we know that the value for each region
must fall between 0 and 1. However, many strategies will have an unknown minimum and maximum value and
it can thus be difficult to select a suitable binning strategy without resorting to trial and error.

Thus the plot function permits a single integer to be provided to the bins keyword instead of a list. This
will automatically create N + 1 equally sized bins (reserving a special bin for 0.0) between 0 and the maximum
observed value for the census. It is also possible to manually set the size of the largest bin with the bin max

keyword argument. The following example creates the same graph as the previous subsection, but without
explicitly providing a list of bins.

from goldilocks import Goldilocks

from goldilocks.strategies import GCRatioStrategy

sequence_data = {

"my_sequence": {"file": "/store/ref/hs37d5.fa.fai"},

}

g = Goldilocks(GCRatioStrategy(), sequence_data, length="100K", stride="50K", is_faidx=True)

g.plot(bins=10, bin_max=1.0, title="GC Content Profile of hs37d5")

5.3.3 Proportional bin plot

Often it can be useful to compare the size of bins in terms of their proportion rather than raw counts alone.
This can be accomplished by specifying prop=True to plot. The y axis is now the percentage of all regions
that were placed in a particular bin instead of the raw count.

from goldilocks import Goldilocks

from goldilocks.strategies import GCRatioStrategy

sequence_data = {

"my_sequence": {"file": "/store/ref/hs37d5.fa.fai"}

}

g = Goldilocks(GCRatioStrategy(), sequence_data,

length="100K", stride="50K", is_faidx=True)

g.plot(bins=10, bin_max=1.0, prop=True, title="GC Content Profile of hs37d5")

14

5.3.4 Bin multiple contigs or chromosomes from one sample

As demonstrated with the line plots earlier, one may also specify a sample name as the first parameter to plot

to create a figure with each contig or chromosome’s histogram on an individual panel.

from goldilocks import Goldilocks

from goldilocks.strategies import GCRatioStrategy

sequence_data = {

"my_sequence": {"file": "/store/ref/hs37d5.1-3.fa.fai"}

}

g = Goldilocks(GCRatioStrategy(), sequence_data,

length="100K", stride="50K", is_faidx=True)

g.plot("my_sequence",

bins=10, bin_max=1.0, prop=True, title="GC Content Profiles of hs37d5 Chrs 1-3")

15

5.3.5 Bin a contig or chromosome from multiple samples

Similarly, one may want to profile a single contig or chromosome between each input group as previously
demonstrated by the line graphs.

from goldilocks import Goldilocks

from goldilocks.strategies import GCRatioStrategy

sequence_data = {

"hs37d5": {"file": "/store/ref/hs37d5.1.fa.fai"},

"GRCh38": {"file": "/store/ref/Homo_sapiens.GRCh38.dna.chromosome.1.fa.fai"}

}

g = Goldilocks(GCRatioStrategy(), sequence_data,

length="100K", stride="50K", is_faidx=True)

g.plot(chrom=1, bins=10, bin_max=1.0, prop=True, title="GC Content Profiles over Chr 1")

16

5.4 Advanced

5.4.1 Plot data from multiple counting tracks from one sample’s chromosomes

The examples thus far have demonstrated plotting the results of a strategy responsible for counting one
interesting property. But as demonstrated in Section 2.1, strategies are capable of counting multiple targets
of interest simultaneously. Of course, one may wish to plot the results of all tracks rather than just the totals
- especially for cases such as nucleotide counting where the sum of all counts will typically equal the size of
the census region! The plot function accepts a list of track names to plot via the tracks keyword argument.
Each counting track is then drawn on the same panel for the appropriate chromosome. A suitable legend is
automatically placed at the top of the figure.

from goldilocks import Goldilocks

from goldilocks.strategies import NucleotideCounterStrategy

sequence_data = {

"hs37d5": {"file": "/store/ref/hs37d5.1-3.fa.fai"},

}

g = Goldilocks(NucleotideCounterStrategy(["A", "C", "G", "T", "N"]), sequence_data,

length="1M", stride="500K", is_faidx=True, processes=4)

g.plot(group="hs37d5", prop=True, tracks=["A", "C", "G", "T", "N"])

Note that prop is not a required argument, but can still be used with the tracks list to plot counts proportionally.

17

5.4.2 Plot data from multiple counting tracks for one chromosome across many samples

As seen in Section 5.2.1, one can use the chrom keyword argument for plot to create a figure featuring a panel
per input sample, displaying census results for a particular chromosome. Similarly, this feature is supported
when plotting multiple tracks with the tracks keyword.

from goldilocks import Goldilocks

from goldilocks.strategies import NucleotideCounterStrategy

sequence_data = {

"hs37d5": {"file": "/store/ref/hs37d5.1.fa.fai"},

"GRCh38": {"file": "/store/ref/Homo_sapiens.GRCh38.dna.chromosome.1.fa.fai"},

}

g = Goldilocks(NucleotideCounterStrategy(["A", "C", "G", "T", "N"]), sequence_data,

length="1M", stride="500K", is_faidx=True, processes=4)

g.plot(chrom=1, prop=True, tracks=["A", "C", "G", "T", "N"])

18

5.5 Integration with external plotting tools

5.5.1 ggplot2

Plotting packages such as ggplot2 favour “melted” input as described in Section 3.2.2. The figure below was
created using data from Goldilocks as part of our quality control study, the scatter plot compares the density
of SNPs between the GWAS and SNP chip studies across the human genome.

19

5.5.2 Circos

As demonstrated in Section 3.2.3, Goldilocks has an output format specifically designed to output information
for use with the “popular and pretty” circos visualisation tool. Below is an example of a figure that can be
generated from data gathered by Goldilocks. The figure visualises the selection of regions from our original
quality control study. The Python script used to generate the data follows. The configuration for the plot itself
has been excluded for the sake of brevity but can be downloaded from the online documentation.

Sector of Goldilocks Circos Graph for Chr3 35:65Mbp

From outside inward: (1) Cytogenetic banding, (2) overall

Goldilocks region indicator, (3) scatter plot and (4) heatmap

of variants over GWAS samples, (5) GWAS and (6) SNP chip

specific Goldilocks region indicators, (7) heatmap and (8) scatter

plot of variants over SNP chip study. Scatter plots (3) and (8)

are annotated with Goldilocks zones in gold, representing 10%iles

around the median and top 5%iles respectively.

Note detection of two 1Mbp Goldilocks regions at 46-47Mbp and

58-59Mbp. The former was ultimately chosen as the “Goldilocks”

region for our QC study.

from goldilocks import Goldilocks

from goldilocks.strategies import PositionCounterStrategy

sequence_data = {

"gwas": {"file": "/encrypt/ngsqc/vcf/cd-seq.vcf.q"},

"ichip": {"file": "/encrypt/ngsqc/vcf/cd-ichip.vcf.q"},

}

g = Goldilocks(PositionCounterStrategy(), sequence_data,

length="1M", stride="500K", is_pos_file=True)

Query for regions that meet all criteria across both sample groups

The output file goldilocks.circ is used to plot the yellow triangular indicators

g.query("median", percentile_distance=20, group="gwas", exclusions={"chr": [6]})

g.query("max", percentile_distance=5, group="ichip")

g.export_meta(fmt="circos", group="total", value_bool=True, chr_prefix="hs", to="goldilocks.circ")

20

Reset the regions selected and saved by queries

g.reset_candidates()

Export all region counts for both groups individually

The -all.circ files are used to plot the scatter plots and heatmaps

g.export_meta(fmt="circos", group="gwas", chr_prefix="hs", to="gwas-all.circ")

g.export_meta(fmt="circos", group="ichip", chr_prefix="hs", to="ichip-all.circ")

Export region counts for the groups where the criteria are met

The -candidates.circ files are used to plot the yellow ’bricks’ that

appear between the two middle heatmaps

g.query("median", percentile_distance=20, group="gwas")

g.export_meta(fmt="circos", group="gwas", to="gwas-candidates.circ")

g.reset_candidates()

g.query("max", percentile_distance=5, group="ichip")

g.export_meta(fmt="circos", group="ichip", to="ichip-candidates.circ")

g.reset_candidates()

21

	Installation
	Command Line Usage Example
	Inspect Strategies
	Nucleotide Counting

	Package Import Usage and Output Format Examples
	Nucleotide Counting
	Our Quality Control Study
	Tabulated Output
	BED Output
	Melted Output
	Circos Output

	Custom Census Rules
	A Simple ORF Finder
	Code Sample
	Implementation Description

	Plotting Examples
	Scatter Graphs
	Simple Plot

	Line Graphs
	Plot multiple contigs or chromosomes from one sample
	Plot a contig or chromosome from multiple samples

	Histograms
	Simple profile (binning) plot
	Simpler profile (binning) plot
	Proportional bin plot
	Bin multiple contigs or chromosomes from one sample
	Bin a contig or chromosome from multiple samples

	Advanced
	Plot data from multiple counting tracks from one sample's chromosomes
	Plot data from multiple counting tracks for one chromosome across many samples

	Integration with external plotting tools
	ggplot2
	Circos

